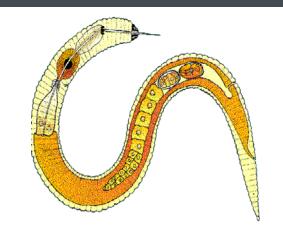
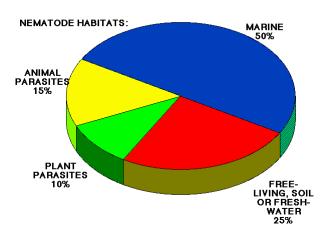
2017 WAVE
The Clore Center
19 April 2017

MANAGING NEMATODES IN A MATURING WINE GRAPE INDUSTRY

Michelle M. Moyer, Ph.D.
Assistant Professor
Statewide Viticulture Extension Specialist
WSU-IAREC
Prosser, WA

wine.wsu.edu



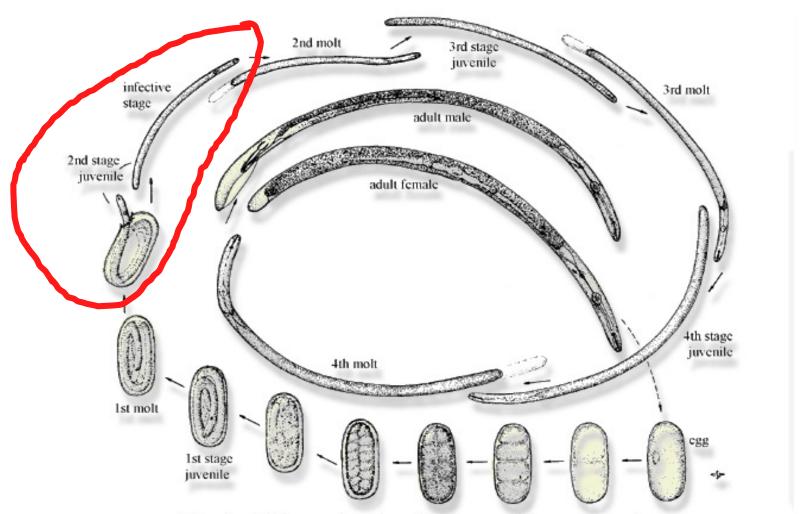


WASHINGTON STATE UNIVERSITY

WHAT ARE NEMATODES?

- Non-segmented round worm
 - Very small (0.5-3.0 mm)
 - Very little in common with others in Animal Kingdom
 - 2,000 species of plant-parasitic nematodes
- Global crop loss of \$80 billion
 - In 35 USA states, nematodes account for 25% of crop loss
 - WA, \$40 million loss (if crops are not treated)

Plant-parasitic nematodes are ~10% of the total nematode species



Viticulture and Enology Program

WASHINGTON STATE UNIVERSITY

GENERAL LIFECYCLE

Typical life cycle of a plant-parasitic nematode.

NEMATODES IN WASHINGTON VINEYARDS

Plant-Parasitic Nematodes Found in
Oregon and Washington Vineyards

Most likely and Capable of Causing Economic Damage

Root-knot (Meloidogyne hapla)

Ring (Mesocriconema xenoplax)

Dagger (Xiphinema americanum)

Present but Unlikely to be of Economic Importance

Root-lesion (*Pratylenchus* spp.)

Pin (Paratylanchus spp.)

Stunt (*Tylenchorhynchus* spp.)

Spiral (Helicotylenchus spp.)

NEMATODE FEEDING TYPES – LOCATION TO ROOT

Endoparasite

- Endo = internal
- Embeds inside the plant tissue to feed
- Survival is often tied to the survival of the host plant
- Creates feeding cells

Ectoparasite

- Ecto = external
- Feeds on roots
 while remaining
 external to the plant
- More susceptible to environmental changes

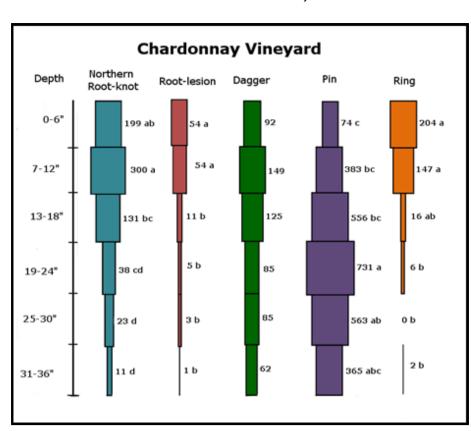
NEMATODE FEEDING TYPES - MOVEMENT

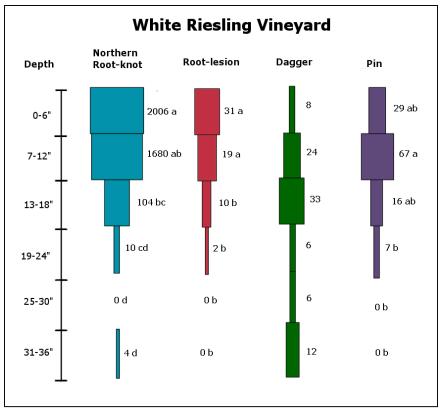
Migratory

- Moves around
 - Ring, dagger, pin nematodes:
 migratory ectoparasites
 - Lesion nematode: migratory endoparasite
- No permanent feeding cells

Sedentary

- Does not move
 - Root knot nematode: sedentary endoparasite
- Feeding cells are large and plug the vasculature





WASHINGTON STATE UNIVERSITY

NEMATODE DISTRIBUTION IN THE SOIL

** Project that collected this data was also previously funded by the Washington State Grape and Wine Research Program

PLANT-PARASITIC NEMATODES IN WA VINEYARDS

- Surveys conducted in 2000 and 2003
 - 157 vineyard sampled
 - Nematodes extracted from soil only (no roots)

Nematode species	Common name	Mean (max) per 250 g soil	% Occurrence relative to total samples
Meloidogyne hapla	Northern root-knot	85 (1,088)	60
Xiphinema sp.	Dagger	25 (284)	59
Pratylenchus sp.	Root-lesion	9 (155)	45
Mescocriconema xenoplax	Ring	5 (170)	14
Paratylenchus sp.	Pin	54 (981)	50
Tylenchorynchus sp.	Stunt	0 (12)	8
Trichodorus sp.	Stubby-root	2 (2)	2

SOIL SAMPLING – INTERPRETING RESULTS

Nematode Species	Average Density (WA)	Threshold 1	Threshold 2	Threshold 3
Root-Knot Nematode	85	5-20	50	100+
Dagger Nematode	25	0	5	25+
Ring Nematode	5	5-20	25-250	300+
Lesion Nematode		5-20	25-45	50+

Threshold 1: Not of general concern

Threshold 2: Might cause damage if the plant is weak / young

Threshold 3: Will likely cause some crop damage; however, it is

site-dependent

MANAGEMENT STRATEGIES OF NEMATODE CONTROL

- There are three main strategies available for nematode control in grapes :
 - Chemical application
 - Synthetic
 - Organic
 - Green manures
 - Release "biofumigants"
 - Must be applied annually
 - In some cases, can be hosts to nematodes as well
 - Cultural strategies
 - Use of rootstocks
 - Fallow periods

NEMATODE MANAGEMENT STRATEGIES

Pre-Plant

- Fumigation
- Fallow periods
- Cover crops / green manure
- Use of rootstocks

Post-Plant

- Some products labeled for postplant treatment
- Cover crops / green manure for suppression

CHEMICAL APPLICATIONS - PREPLANT

Synthetic

- All are ground-applied:
 - Telone II / Cordon (1,2-dichloropropene)
 - Telone C35 / Pic-Clor 60 EC (1,3-dichloropropene + chloropicrin)
 - Vapam HL (metham sodium)
 - Enzone (sodium tetrathiocarbonate)**
- Organic
 - DiTera (Myrothecium verucaria)

Chemical recommendations can change frequently, dependent on state and product registration.

CHEMICAL APPLICATIONS – POST PLANT

- Synthetic
 - Foliar application:
 - Movento (spirotetramat)
 - Drip application
 - Enzone (sodium tetrathiocarbonate)**
 - Admire Pro (imidacloprid) (suppression only)
 - Several new products (we are currently testing)
- Organic
 - DiTera (Myrothecium verucaria)
 - Azadirachtin (various trade names)

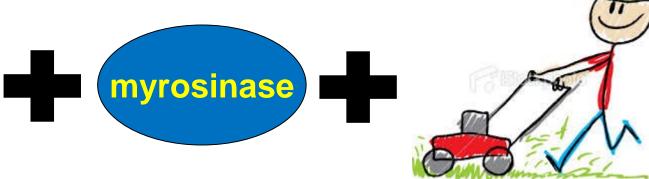
Chemical recommendations can change frequently, dependent on state and product registration.

COMMON MISTAKES WITH CHEMICAL CONTROL

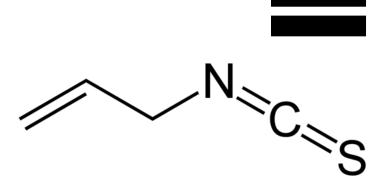
- "Coverage"
 - Fumigants need to reach nematodes
 - Vineyard infrastructure can limit penetration
- Timing
 - Inappropriate timing for the chemical
 - Inappropriate timing for the pest
- Wrong target
 - Only works on certain nematode species

GREEN MANURES – "CHEMICAL" CONTROL

- Green manures:
 - Cover crops grown specifically for a purpose other than soil erosion control
 - "Green" indicates they are mulched into the soil during cultivation
- Green manures come in many different forms, each with their own unique set of attributes



GREEN MANURES – MUSTARD

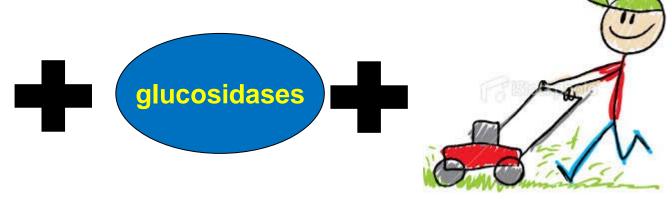


They also contain enzymes

These two mix together when plant tissue is damaged

Allyl isothiocyanate (AITC)

WASHINGTON STATE UNIVERSITY



GREEN MANURES – SUDAN GRASS

Sudan grass contains dhurrin *

* Dhurrin itself is a natural insect repellent

Enzymes can degrade dhurrin

These two mix together when plant tissue is damaged

Hydrogen cyanide

COMMON MISTAKES IN GREEN MANURE USE

- Assumes it provides "control"
 - At best, it provides a suppression of existing populations
- Used in high-population situations
 - Green manures may help stabilize nematode populations at low numbers
 - They do not replace fumigation at high numbers
- Some cover crops are hosts to nematodes

CULTURAL PRACTICES – FALLOW PERIODS

- Fallow periods = period of time when no plants are being produced
 - No crops
 - No weeds
 - No cover crops
- In ideal situations, the ground is also allowed to dry down
 - Many vine parasitic nematodes do not survive in dry conditions
 - Spread can be reduced if a dry "barrier" is provided

ALC.

WASHINGTON STATE UNIVERSITY

CULTURAL PRACTICES – USE OF ROOTSTOCKS

Genotype	Parentage	M. incognita Race 3	M. javanica	Meloidogyne pathotypes Harmony A&C	М.	X.	M. xenoplax	P.	T. semipenetrans	X. ameriacanum	Para.
101-14Mgt	V. ribaria, V. rubestris	30,000,000	J	R		S	S	MR	T		S
1103Paulsen	V. solonis x V. riparia			S		S	S	MS			S
110Richter	V. berlandieri, V. rupestris			MR		S	S	S			S
140Ruggeri	V. berlandieri, V. rupestris			MR		S	S	\mathbf{S}			MS
1613Couderc	V. solonis, V. othello	R	R	S	S	MR	S	MS	S	S	

Take Home:

You need to know what the nematode population was before you can properly select a rootstock.

Riparia Gloire	V. riparia			R		R	S	MR			S
RS-3	V. candicans, V. riparia, V. rupestris	R	R	MR	MR	S	S	MR			S
RS-9	V. candicans, V. riparia, V. rupestris	R	R	R	R	S	S	MS			S
Schwarzmann	V. riparia, V. rupestris	S	MR	S		MR	MS	S	S	MS	S
St. George	V. rupestris	S		S		S	S	MS			MS
Teleki 5C	V. berlandieri, V. riparia	MS	MR	S		MR	MS	S	S	S	MS
USDA 10-17A	V. simpsoni, M. rotundifolia	R	R	R	R	R	MS	R	R		
USDA 10-23B	V. doanianna	R	R	R	R	R	MR	R	R		
USDA 6-19B	V. champinii	R	R	MS	R	MR	MR	R	R	R	
VR O39-16	V. vinifera, M. rotundifolia	S	S	S		R	R	MR	S	MR	MR

Resistance assessed relative to nematode reproduction on cv Colombard (or other susceptible cultivar): R < 10% (resistant), MR 10-30% (moderately resistant), MS 30-50% (moderately susceptible), S >50% (susceptible).

CURRENT AND FORTHCOMING PROJECTS

Rootstocks, thresholds, and practical management tactics.

PROJECT BACKGROUND

- We do not have "action" thresholds for nematode management in Washington
 - Current numbers are simply "average"
- Recent work shows preplant fumigation does not last long
- Recent work shows that our timing of action does not align with nematode biology
- Work in other systems suggest plant nutrient status influence nematode development

WASHINGTON STATE UNIVERSITY

THE NEMATODE TEAM

Dr. Inga Zasada Nematologist Extraordinaire USDA-ARS Corvallis, OR

Dr. Paul Schreiner Physiologist USDA-ARS Corvallis, OR

Katherine East Graduate Student PhD WSU-Prosser

Ashley Boren Research Intern / Program Support WSU-Prosser

Gertrude
The Elutriator

The essentials

HOST-STATUS OF OWN-ROOTED VINES

Type (V. vinifera)	Eggs per gram root	Reproduction Factor
White	83,730 a	34.6 a
Red	9,881 b	12.5 b

Variety (own-rooted)	Eggs per gram root	Reproduction Factor
Chardonnay	46,894 a	45.1 a
Riesling	30,566 b	27.6 b
Cabernet Sauvignon	13,015 bc	18.2 bc
Syrah	9,772 c	7.9 c
Merlot	6,856 c	9.5 c

Work done by I. Zasada at USDA-ARS, Corvallis, OR

Viticulture and Enology Program

WASHINGTON STATE UNIVERSITY

ROOTSTOCKS & PREPLANT FUMIGATION

Site preparation for removal Fall 2014

Grafted vines Spring 2015

Site preparation for planting Spring 2015

Direct inoculation pre-planting Spring 2015

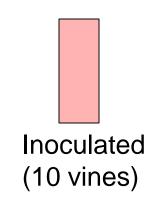
Viticulture and Enology Program

ALC.

WASHINGTON STATE UNIVERSITY

ROOTSTOCK SELECTION

Rootstock	Selection Reasoning
101-14 MTG (riparia x rupestris)	Moderate to high nematode resistance. Bonus of phylloxera and crown gall resistance. Tends to low vigor and earlier ripening. Lower drought resistance.
Harmony ([solonis x Othello] x Dogridge)	Specifically bred for nematode resistance . It is not phylloxera resistant, but it is crown gall resistant.
1103 P (berlandieri x rupestris)	Susceptible to Dagger nematode, but moderate to high resistance to Root-knot nematode. Tends to high vigor, but is relatively drought resistant.
Teleki 5C (berlandieri x riparia)	Decent nematode (except Dagger) and phylloxera resistance. Tends to moderate vigor, and earlier ripening.
Own Rooted (vinifera)	Industry standard control
Own-Rooted, Self- Grafted (vinifera)	Grafting control

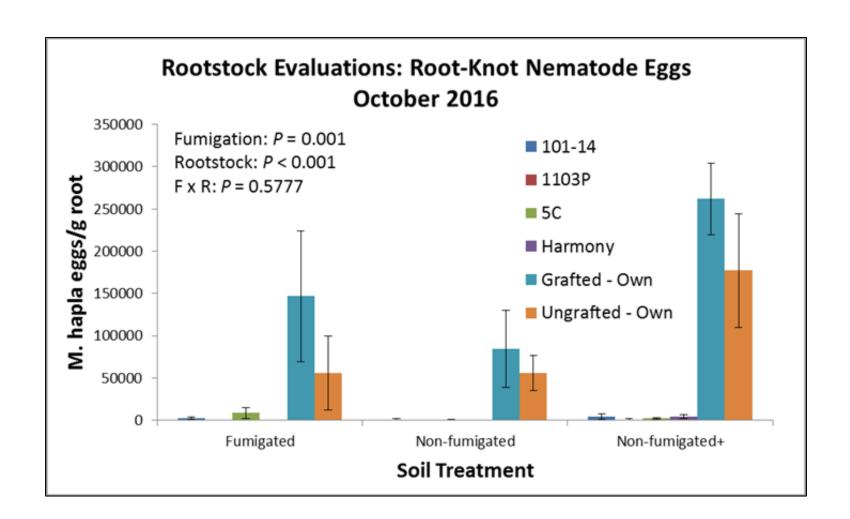


WASHINGTON STATE UNIVERSITY

PROJECT DESIGN

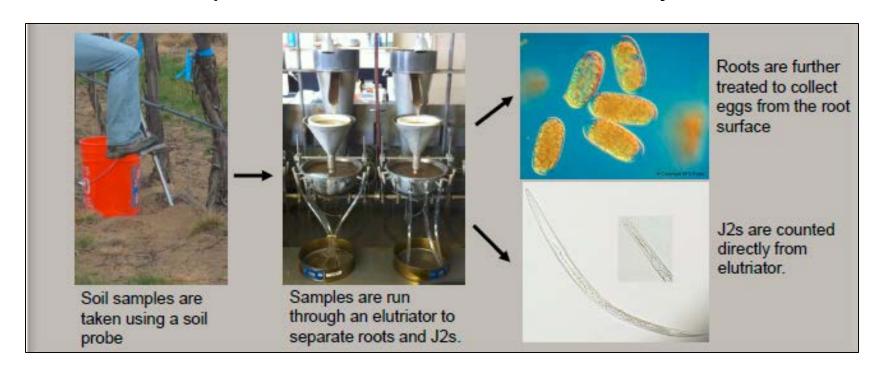
Rootstock	Soil Treatments						
101-14 Mtg	Bench	Field	Field	Bench			
101-14 Mtg	Field	Bench	Bench	Field			
Harmony							
Own-Root (NG)							
101-14 Mtg	Non-fun	nigated	Fumigated				
Teleki 5C							
Own-Root (G)							
1103 P							
Teleki 5C							
1103 P							
Harmony							
101-14 Mtg	Fumiç	gated	Non-fumigated				
Own-Root (G)							
Own-Root (NG)							
Own-Root (G)							
1103 P							
Teleki 5C							
Own-Root (NG)	Fumiç	gated	Non-fumigated				
Harmony							
101-14 Mtg							
Own-Root (NG)							
Harmony							
Own-Root (G)	Non-fun	nigated	Fumigated				
101-14 Mtg							
1103 P							
Teleki 5C							

INFLUENCE OF FUMIGATION ON NEMATODES


Image omitted; research is pre-publication

- Fumigation significantly reduced J2s immediately after spring treatment
- J2 populations began to return by fall (6 months) post treatment
- By 18 months post treatment (approximately 12 months post-planting) J2 populations in treated areas returned to pre-treatment levels

INFLUENCE OF FUMIGATION ON NEMATODES


IMPROVE PRODUCT TIMING – NEMATODE MODELING

Soil and root samples collected:

weekly April – Sept;

and monthly Oct – March

Samples collected at 2 sites, over 2 years

IS OUR CURRENT TIMING OFF?

Presented results omitted; research is pre-publication

- 1. J2 numbers *decline* in the spring to a low-point mid-summer
- 2. J2 numbers start to climb late-summer to early fall, peaking late in the growing season
- 3. M. hapla overwintering as J2!

NEMATODES RESPONDING TO ROOT GROWTH?

1. Seeing mid-summer root flush in *Vitis vinifera*

Presented results omitted; research is pre-publication

- 2. This contrasts with most literature (which say 2 flushes, spring and fall)
- 3. J2 appear to peak after root flush in summer

WASHINGTON STATE UNIVERSITY

EVALUATING POST-PLANT NEMATICIDES

Product	Rates	Timing	Application Type
Nimitz	3.5-5 lbs ai/acre	Apr (October 2017)	Drip
Salibro (Dupont Q8U80)	61.4, 30.7, 30.7 fl oz /acre	Apr, May, Jun	Drip
Velum Prime (fluopyram)	6.84 fl oz/ acre	Apr, Oct	Drip
Movento	6.25 fl oz product / acre	May, Jun	Foliar
Velum Prime + Movento	6.84 fl oz/ acre + 6.25 fl oz product / acre	Apr, Oct+ May, Jun	Drip + Foliar
Control	n/a		Drip

Collecting data on:

Nematode response, fruit quality, dormant pruning weights

Presented results omitted: pre-publication

THRESHOLDS AND VINE RESPONSE

- **Experiment 1:** Challenge rootstocks with *M. hapla* to examine the durability of resistance responses over a range of nematode densities.
- Experiment 2: Determine if water availability and irrigation affect the host-parasite interaction in establishing vineyards.
- **Experiment 3:** Determine if vine nutritional status (particularly nitrogen) changes the host-parasite interaction and improves vine tolerance to *M. hapla* during vineyard establishment.

ROOTSTOCKS & FUMIGATION (10YRS)

- Continue collecting data at Canoe Ridge trial planting
- Will be able to provide numbers on effectiveness of each practice
 - Is preplant fumigation really enough?
 - Is the use of a rootstock worth it?
 - Do you need both in replant situations?
- Will collect nematode, vine response (dormant pruning weights, yields) over ~10 years

ANTICIPATED PROJECT OUTCOMES

- Learn what nematode densities elicit damage in new vineyards (establish action thresholds)
- 2. Learn how rootstocks perform against our nematode species (management practices)
- 3. Determine how irrigation and nutritional status of newly-planted vines influence their response to nematode pressure (management practices)
- 4. Determine duration of preplant fumigation relief in replant scenarios (management practices)
- Final evaluation of post-plant nematicides (management practices)

QUESTIONS?

VITICULTURE EXTENSION

WASHINGTON STATE UNIVERSITY

World Class. Face to Face.

michelle.moyer@wsu.edu; Office: 509-786-9234 www.wine.wsu.edu/research-extension www.facebook.com/wsu.vit.enol.ext